

Welcome to the Jupiter 1000 project First industrial Power-to-Gas demonstrator in France

Version 05 2022

GRTgaz : the main transmission system operator in France

- A regulated gas transmission company
- > 3 330 employees
- > 32 618 km of high pressure pipelines
- > 26 compression stations
- > 708 TWh of gas transported
- about 4500 gas delivery stations
- 703 industrials actors connected to the grid
- > 2,535 billions € of turn over

Power-to-Gas : heart of an integrated strategy for Energy Transition

Gas Grid decarbonization

- Replace fossil gas by **renewable ones** (H2 or synthetic methane)
- Adapt infrastructure and equipment
- Experiment capture and recycling of CO₂

Power Grid support

- **Give a value** to electric surpluses due to intermittent renewable production
- Support **power grid stability**
- Energy system optimization and Synergy

Territorial development

- Replace imports with local production
- Reduce the country's energy dependency
- Develop technological exports and local employment

A strategy of grid integration at a country level, and the aim of global efficiency About 50 projects spotted around Power to Gas technologies, mainly in Europe...

From Power ... to Gas !

When the gas grid offers the capacity to store massive renewable electrical surplusses

Power-to-Gas Jupiter 1000 process

Methanation improves synergies, with the possibility to store bigger volumes

4

Objectives of the demonstrator Jupiter 1000

The best way to convince is to achieve a proof

Validate the processes + integration of a new gas into the gas system

- Validate the technologies : electrolysers, methanation and CO2 capture
- Experiment hydrogen injection into the gas grid
- Confirm the flexibility offered to support the power grid

Launch the Power-To-Gas sector in France

- Help to build suitable conditions for the emergence of a new industrial sector
- Feed the debate :
 - Environmental benefits
 - Impact of CO2 quality
 - Guaranties of Origin
 - o ...

Explore the Business Model

The project is helped by local and institutional players

And with the active participation of industrial neighbours

| 7

CO₂ pipeline

An environment supportive for innovative projects

- The project is developed on the INNOVEX platform, up to increase synergies with the industrial neighbourhood
- Jupiter 1000 collaborates with industrial customers

10

NJH

The situation today ...

The alkaline electrolyser

The PEM electrolyser

The methanation device is settled

Hydrogen is injected in the grid since 02 2020

The best way to convince is to achieve a proof of concept.

Research & Development objectives and activities

Our objectives

Our activities Learning

about the Power-to-Gas technologies performances, safety, environmental benefits, and profitability of PtG

Assessing

and improving

Demonstrating

the feasibility of using the PtG as an energy storage with the gas transmission network the large scale development of the PtG

Promoting

	Performance of the assets	Reliability and durability	
Measuring the performances of the technologies		Learning from the on-site field feedback	
Testing	a smart remote control of the facilities	Preventing failures and protecting from their consequences	
Evaluating the economic and environmental benefits		Managing the ageing of critical parts	
eres	Impacts of H ₂ on assets	State of the art and good practice	
Monitor	ring effects on the equipment items	Identifying technological trends	
Monitor	ring effects on the pipelines	Providing educational equipment	
	ing offects for downstream concurrence	Promoting good safety practice	

Planning of R&D activities

End of tests & studies : 2024

First lesson- learned	✓ Alkaline & PEM electrolyser tests ✓ Preliminary technical and economic study ✓ Preliminary life cycle assessment (LCA)	2022 and 2023	 End of alkaline electrolyser testing Tests on the PEM electrolyser, the methanation plant, the "smart" remote control Update of preliminary studies/analyses with real data and feedback
First lesson- learned	 Reliability and durability Implementation of incident and failure monitoring First studies on the reliability of equipment Bibliographical study on degradations 	2022 and 2023	 Continued monitoring of incidents and failures Investigation of the most critical failures Reliability analysis of technologies
First lesson- learned	 Impacts of H₂ on assets ✓ First tests (test tubes, sleeves, inspections), and exchanges with downstream users ✓ To date, no noticeable effects of H₂ on pipes and industrial customers.(hydrogen volume <2%) 	2022 and 2023	 Continued testing (sampling) Continued exchanges with downstream users Specific measurements at the gas network outlet
First lesson- learned	 ✓ First achievements on the state of the art ✓ Organization of work on risk analysis ✓ Development of H₂ safety training 	2022 and 2023	 Continuation of the state of the art on Power-to-Gas Generic "risk study" of Power-to-Gas Tests and measurements on H₂ leakage control Recommendations for the design, operation and maintenance of a Power-to-Gas installation

And after 2024 ?

2 main focus areas to be considered

Platform for GRTgaz and other gas transmission system operators

Test center for hydrogen equipment (electrolyser, gas analysers, valves...)

